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Figure 1: Island-like visualization of a document point cloud’s topological structure. By sharing similar dimensions, documents accumulate in
subspaces of the high dimensional information space. Considering dimensions as words, clusters are assumed to describe topics, i.e., islands,
in the final visualization.

ABSTRACT

During the last decades, electronic textual information has become
the world’s largest and most important information source avail-
able. People have added a variety of daily newspapers, books, sci-
entific and governmental publications, blogs and private messages
to this wellspring of endless information and knowledge. Since nei-
ther the existing nor the new information can be read in its entirety,
computers are used to extract and visualize meaningful or interest-
ing topics and documents from this huge information clutter.

In this paper, we extend, improve and combine existing individ-
ual approaches into an overall framework that supports topologi-
cal analysis of high dimensional document point clouds given by
the well-known tf-idf document-term weighting method. We show
that traditional distance-based approaches fail in very high dimen-
sional spaces, and we describe an improved two-stage method for
topology-based projections from the original high dimensional in-
formation space to both two dimensional (2-D) and three dimen-
sional (3-D) visualizations. To show the accuracy and usability of
this framework, we compare it to methods introduced recently and
apply it to complex document and patent collections.

Index Terms: H.5.2 [INFORMATION INTERFACES AND PRE-
SENTATION]: User Interfaces—Theory and methods; I.5.3 [Pat-
tern Recognition]: Clustering—Algorithms;
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1 INTRODUCTION

Due to the exponential increase of electronic textual data, comput-
ers are required to reasonably pre-process, classify and visualize co-
herent parts of massive data to prevent the user from aimlessly wan-
dering through information clutter. For this purpose, researchers
have been constantly searching for optimal models to accurately
represent complex linguistic relationships. One of these models is
the vector space model that represents documents as high dimen-
sional vectors. In this paper, we propose a framework that makes
it possible to investigate and visualize such a document point cloud
using a topological approach. We focus on classified documents,
instead of finding the classification itself, because classification is
a discipline in its own right with many different approaches. Fur-
thermore, most document collections, such as newspapers or patent
collections, have their own classification schemes which are manu-
ally assigned. However, the classification itself does not support a
meaningful data layout in lower dimensions. We, therefore, just use
classification information to back up a topology-based projection
from very high dimensions into three dimensions in order to create
a visualization which describes the nesting structure and neighbor-
hood relationship between the parts of the input point cloud. In
order to avoid confusion regarding topological issues, we point out
that we do not try to identify exact topological features, topological
classes or homeomorphic spaces. Those things are considered in
the field of algebraic or point-set topology whose algorithms and
assumptions are way to complex to be applicable in very high di-
mensions. A good survey through this field is given in [2]. Instead
of directly approximating a point set’s or manifold’s topology, we
indirectly construct and study a scalar function’s topology by means
of the join-tree, which is rather limited to describe topological com-
plex features. We, therefore, do not expect the user to be a topol-
ogist and understand ourselves as clustering competitors, since, as



we will see later on, neither the join-tree nor the 3-D landscape vi-
sualization are capable of visualizing various and complex high di-
mensional features. Regarding visual analytics aspects, we present
the user, e.g. a journalist, a framework to obtain a 2-D/ 3-D layout
of a set of documents. To achieve this, we use a topology-based
projection which critically depends on a single parameter which
has to be found by interacting with the visualization. This inter-
active analysis [17] supports the user to iteratively find the desired
parameter, and therefore the desired information. In the end, since
clustering information leads to only coarse insights, we deem our
data layout as an initial point for further exploration.

2 RELATED WORK

Text classification, as a mixture of information retrieval, machine
learning, and (statistical) language processing, is concerned with
building systems that partition an unstructured collection of doc-
uments into meaningful groups [20]. The two main variants are
clustering, i.e., finding a latent structure of a previously determined
number of groups, and categorization, i.e., structuring the data ac-
cording to a group structure known in advance. For the latter super-
vised approach, different types of learners have been used, includ-
ing probabilistic ’naive Bayesian’ methods, decision trees, neural
networks and example-based methods. However, in the context of
computational learning theory and comparative experiments, sup-
port vector machines [12] and boosting [19] have been the two
dominant learning methods in text classification in the recent years.

For structural insights of reasonably high dimensional data, one
can directly visualize the point cloud using axis-based methods
like, e.g., scatter plot matrices [1] or parallel coordinates [10]. Be-
cause these techniques depend on the data’s dimensionality, it is
often beneficial to previously project the data to lower dimensional
spaces. By defining meaningful criteria, like, e.g., maximal vari-
ance or maximal distance between cluster centroids, projections try
to preserve the structure in the projected dimension. Some of them
are either supervised, such as LDA [6] or OCM [11], or unsuper-
vised, such as PCA [13] or MDS [16]. Choo et al. [4] combined
the advantages of several projections to minimize the loss of in-
formation during the transformation. Besides these linear projec-
tions, also non-linear embeddings exist which use additional struc-
tural information when determining a layout of the data in lower
dimensions: Takahashi et al. [22] proposed a manifold learning
approach to obtain a layout in 3-D which reflects the topology of
a high dimensional input scalar function. They use the k-nearest-
neighborhood graph to seek the manifold proximity and they define
an own scalar-based distance measure to determine the closeness of
points. In order to use this method for point cloud analysis, one has
to ensure the definition of a suitable scalar function. For, e.g., clus-
tering purposes, a meaningful scalar function should also be defined
in the void part of a data set (where there are no vertices) in order
to appropriately separate dense regions from regions of low density.
Therefore, Oesterling et al. [17] focus on the appropriate construc-
tion of a point set’s scalar function, supported by a neighborhood
description by means of the Gabriel graph [7], instead of deriving a
manifold from the function. In the end, their 3-D data layout reflects
the topology of the data’s approximated density function, realized
by the topological landscape metaphor [24], a 3-D terrain which
has the same topology as the input data set. Specifically for docu-
ment collections, ThemeScape [25] also uses a terrain metaphor to
visualize the data, however, utilizing different underlying models.

3 BACKGROUND

The original contribution of this work lies in extending, improving
and combining several individual approaches into an overall frame-
work for analyzing document collections. To make it easier to the
reader to follow the details in the later part of this paper, we intro-
duce the most important concepts in this section.

3.1 Linear Discriminant Analysis (LDA)
For classified, high dimensional data, Choo et al. [4] described the
dimension reduction as a trace optimization problem. Following
their nomenclature, the clustered m-dimensional data points ai ∈
Rm are given as a data matrix

A = [A1 A2 · · · Ak], where Ai ∈Rm×ni and
k

∑
i=1

ni = n.

The groups of column vectors in A correspond to the k groups of n
clustered m-dimensional input vectors. For these groups Ni of col-
umn indices of vectors belonging to cluster i, the cluster centroids
c(i) and the global centroid c are given by

c(i) =
1
ni

∑
j∈Ni

a j and c =
1
n

n

∑
j=1

a j

Using the clusters’ vectors together with their centroids and
the global centroid, the within-cluster scatter matrix Sw and the
between-cluster scatter matrix Sb are defined as

Sw =
k

∑
i=1

∑
j∈Ni

(a j− c(i))(a j− c(i))T

Sb =
k

∑
i=1

ni(c(i)− c)(c(i)− c)T

By calculating the trace of these scatter matrices as

trace(Sw) =
k

∑
i=1

∑
j∈Ni

‖a j− c(i)‖2
2 (1)

trace(Sb) =
k

∑
i=1

ni‖c(i)− c‖2
2 (2)

Choo et al. [4] specify cluster quality measures by considering the
distances between the k cluster centroids and the variance within
each cluster, respectively. That is, well-separated clusterings usu-
ally will have a large trace(Sb) and a small trace(Sw). Eq.(1) de-
scribes trace(Sw) as the squared sum of pairwise distances between
a cluster’s points and its centroid. Likewise, Eq.(2) describes the
pairwise distances between the cluster centroids and the global cen-
troid.

The fundamental idea of their approach is to consider dimension
reduction as a trace optimization that maximizes trace(GT SbG) and
minimizes trace(GT SwG) in the reduced dimensional space, using
a dimension reducing linear transformation

GT ∈Rl×m : x ∈Rm×1→ z = GT x ∈Rlx1

projecting an m-dimensional input vector to an l-dimensional space
(m > l). It turns out that the solution, GLDA, of the LDA criterion as

Jb/w = maxtrace((GT SwG)−1(GT SbG))

consists of the column vectors which are the leading generalized
eigenvectors u of the generalized eigenvalue problem

Sbu = λSwu (3)

and that LDA preserves the original cluster structure after project-
ing the m-dimensional input vectors into the l-dimensional space,
such that l = k− 1. We refer the interested reader to reference [4]
for further information, as it explains all the relationships clearly
and in much more detail. In summary, LDA uses the additional
clustering information of the input data to do a supervised projec-
tion from the original high dimensional space into an optimal lower
dimensional space, i.e., (k−1)-dimensional, maximizing the inter-
cluster distances and minimizing the intra-cluster distances in the
reduced dimensional space.



3.2 Approximating a Point Cloud’s Topology
Although the LDA preserves the clustering structure in the interme-
diate space in terms of its criteria, the target dimensionality might
still be significantly larger than two or three. As a consequence,
a subsequent projection will cause a loss of information due to
projective overplotting in conventional visualizations. In order to
avoid this second projection error, the intermediate space could be
analyzed directly, instead of considering the point cloud in either
the original m-dimensional space or in the 2-D/ 3-D space. Oester-
ling et al. [17] describe a method to analyze a point cloud’s structure
in higher dimensions followed by a topology-based projection to
obtain a 3-D layout of the data which describes the structure in the
original space. The basic idea is to describe the point cloud’s struc-
ture indirectly by constructing a scalar function which appropriately
reflects the data distribution in terms of density. In the context of
density-based clustering, they have to evaluate the neighborhood
of the given points in order to distinguish regions of both high and
low density. Afterwards, they perform a topological analysis on this
scalar field, utilizing the join-tree [3] which encodes the (joining-)
evolution of contours, i.e., regions of equal density throughout the
scalar function. The final visualization, in the end, reflects that join
tree’s hierarchical structure, which, in turn, reflects the structure of
the point cloud’s density distribution. In particular, they perform
the following steps:

1) to facilitate the investigation of a point’s neighborhood, the
input point cloud is connected by the Gabriel graph [7] which
is a special neighborhood graph

2) utilize the neighborhood graph to perform kernel density es-
timation at meaningful positions in space. In this case, at the
graph vertices, i.e., at the data points (where it is dense), and
on the mid-points of the graph’s edges, i.e., in the void be-
tween two neighbored points (where it is likely not dense)

3) the join-tree computation is performed on this approximated
density distribution to analyze the amount, size and (joining-)
behavior of the contours. Because the contours describe the
dense regions, this equals the determination of number, size
and hierarchy of clusters

4) make use of the topological landscapes metaphor, proposed
by Weber et al. in [24], to create a 3-D terrain which has the
same topology as the join-tree. In this landscape, the structure
of hills corresponds to that of the clusters in the data set

We show topological landscapes and variations of this metaphor
throughout the next sections. Due space limitations, we refer to [17]
and [24] for further information, since they introduce and explain
a number of other concepts unrelated to the contributions of this
work.

3.3 Volatility
In the vector space model (vsm) [18], text documents are repre-
sented as vectors. Each dimension corresponds to a separate term1

and denotes the term’s relevance in this particular document. Many
different criteria have been proposed to extract only meaningful
terms together with their individual significances. A common ap-
proach is the if-idf document-term weighting: for each single docu-
ment, each term’s frequency is weighted relatively to the number of
other documents containing this term. Instead of only considering
term frequencies in a single document or the whole corpus, addi-
tional semantic analysis can contribute to a vector’s final expres-
siveness. Teresniak et al. [23, 9] proposed an approach to define a

1We take a term to mean the inflected type of a word, whereas a word is
assumed to mean an equivalence class of inflected forms of a base form

term’s meaningfulness or topical relevance by looking at the tem-
poral fluctuation of a term’s global context (i.e., how neighboring
terms change over time). Utilizing stock-market nomenclature, the
authors call this fluctuation of context the term’s volatility. Thus,
analyzing the variation of a term’s context for different time slices
can be utilized to detect highly discussed topics and their impor-
tance over time. To provide rough outline of the method, the major
calculation steps are:

1) Compute the significant co-occurrences C(t) for each term t
in the whole corpus

2) Compute the significant co-occurrences CTi(t) for each term t
in every time slice Ti

3) For every co-occurrence term ct, j ∈C(t) compute rankct, j (i),
the series of ranks of ct, j in the context of term t in every time
slice Ti

4) Compute the coefficient of variation (i.e., the ratio of the
standard deviation to the mean) CV (rankct, j (i)) for every co-
occurrence term ct, j ∈C(t)

5) Compute the term’s volatility as the average of these vari-
ances:

Vol(t) = 1
|C(t)| ∑j

CV (rankct, j (i))

When plotting a term’s frequency and volatility over time, both
quantities do not necessarily correlate, as the basic idea of volatility
is to detect a topic (as a change of contexts) and not detecting just
a heavy usage of high-frequent terms describing it. Although other
methods may be used to increase the expressiveness of terms, we
chose this model to additionally support the tf-idf measure and omit
terms which are not volatile enough. For more details and examples
comparing frequency and volatility, we refer to [23, 9].

4 PROBLEMS IN VERY HIGH DIMENSIONS

It was Richard Bellman who first stated almost fifty years ago that
“a malediction has plagued the scientist from the earliest days”.
While this malediction, basically, concerns the problems caused by
increasing the number of independent variables in different fields
of application, especially for (metric) spaces, this means an expo-
nential increase of volume with each additional dimension. As a
consequence, particularly for distance-based approaches, it has be
shown [21, 14, 8] that depending on the chosen metric, the distances
between points either depend on the dimensionality (L1 norm) or
approach a constant (L2 norm) or zero (Ld≥3 norm). That is, the
relative difference between the distances to a point’s farthest and
closest point approaches zero. As a consequence, distances be-
come relatively uniform in higher dimensions and some distance-
based relationships such as nearest neighbors become meaning-
less in those spaces. Of course, if distances become uniform, ev-
ery distance-based approach is affected by this phenomenon. To
illustrate this problem for clustering algorithms, we consider the
MEDLINE2 data set. This data set consists of 1,250 vectors in
a 22,095-dimensional space, divided into five equally sized clus-
ters. The black graph in Figure 2(a) shows the number of indi-
vidual distances between any two points. It is clearly visible3 that
the maximum of all distances lies around 2.0 and 98,79% of the
distances are greater than 1.85. The key issue is that both the inter-
cluster distances (green) and the intra-cluster distances (red), which
are obtained by considering the given clustering information, show
the same behavior. If a data set contains several clusters, however,

2We use the sparse matrices kindly provided in [4]
3all diagrams can be arbitrarily magnified in the electronic version of

this paper
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Figure 2: Partitioning of the MEDLINE distances between any (black)
two points into inter-cluster (green) and intra-cluster (red) distances,
done (a) in the original dimensionality and (b) after applying LDA.
Now, the red and the green peak are separated.

this graph typically shows two peaks: one for the intra-cluster dis-
tances, and a peak representing the average distance between points
[21]. Consequently, because only one peak is present, any purely
distance-based approach will have issues with finding the underly-
ing clustering of this data set.

4.1 Concerning High Dimensional Documents

In addition to geometric issues, other semantic problems contribute
to the measured distance between documents. If documents are
represented by vectors, meaningful words usually serve as the
vectors’ dimensions. Although both a word and its significance
heavily depend on the chosen algorithm, there will always be
some words in the vector which disturb the basic assumption that
(dis)similarity between documents is reflected by the distance
between their corresponding vectors. Such words, like common
and frequent words, can make two documents from different topic
areas appear more similar than actually desired (or needed). The
situation becomes worse if the distance between two documents is
dominated by the contribution of non-discriminating words. It is
possible that two document vectors about the same topic consist
of equal numbers of discriminating and common words. If the
common words are even distinct, they can cause the vectors to
unintentionally disperse, thus negatively affecting the clustering.

In summary, when we consider a document collection as a
point cloud, we are faced with two main problems. First, the
construction of a point cloud where distances between points
reflect (dis)similarities between documents. Second, due to curse
of dimensionality, we are most likely not able to distinguish
between similarity and dissimilarity, because most of the inter- and
intra-cluster distances are uniform. To alleviate the first problem,
language processing is necessary to avoid choosing meaningless
words which force documents to unintentionally approach or
disperse. For the second problem either a supervised (distance-
independent in our case) clustering algorithm or a supervised
projection to a lower dimensional space, being less afflicted by
curse of dimensionality, is needed.

5 TWO-STAGE PROJECTION

Our two-stage approach is related to that proposed in [4].
Choo et al. describe several two-stage combinations of supervised
LDA or OCM and unsupervised PCA to project the original input
point cloud into an intermediate space, followed by a second projec-
tion down to 2-D. The supervised first stage projects the point cloud
preserving its cluster structure and the goal of the second projection
is to minimize information loss due to the dimension reduction to
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(b)

Figure 3: (a) Rank-2 LDA of the REUTERS data set. Some clusters
are still mixed in the projection (b) part of the 9-D scatterplot matrix,
showing the intrinsic separation of the overplotted clusters.

2-D. One of the main contributions of our work is to improve the
output of this two-stage approach by substituting the second stage
a with direct topological analysis of the intermediate space. To mo-
tivate this, we first consider the two-stage LDA-LDA projection.

5.1 Examining the Rank-2 LDA projection
This projection proposed by Choo et al. [4] consists of two subse-
quent LDA projections. The first from the original m-dimensional
space into an intermediate (k− 1)-dimensional space. The second
LDA projects to (k− 1)-dimensional data down to the 2-D space.
As accurately explained in [4], the final projection matrix V ,

V T ∈R2×m : x ∈Rm×1→ z = V T x ∈R2×1 = [u1 u2]

composing the two single projections, consists of the leading gen-
eralized eigenvectors of Eq. (3). Since the Rank-2 LDA and
LDA+PCA are claimed to produce the best discriminating and al-
most identical results, we consider the Rank-2 LDA output, using
the REUTERS2 data set. This document collection consists of 800
vectors in a 11,941-dimensional space, assigned equally to the fol-
lowing k = 10 clusters (the letters are used in the diagrams):

earn (’e’), acquisitions (’a’), money-fx (’m’), grain (’g’), crude (’r’),
trade (’t’), interest (’i’), ship (’s’), wheat (’w’), and corn (’c’)

The result of the Rank-2 LDA is shown in Figure 3(a). As can be
seen3, the clustering is preserved well by the Rank-2 LDA. How-
ever, the clusters on the right-hand side and in the top left-hand cor-
ner of the scatter plot are overplotted. The pivotal question is why.
Overplotting could either be due to data relationships, i.e., clusters
are indeed mixed in the original space, or due to overplotting in the
second stage. Since LDA preserves the cluster relationship in the
l-dimensional space, we can analyze this 9-dimensional intermedi-
ate space by looking at a scatter plot matrix. Figure 3(b) shows us
that the second assumption is true. Examining the point cloud not
only from the first two principal components, but considering the
7th− 9th dimensions in the scatter plot matrix, it can be seen that
both overplotted clusters consist of actually separated clusters in the
intermediate vector space. This is not completely surprising, as the
second-stage dimension reduction only uses two axes to discrimi-
nate the classes which contribute most to the second stage criteria.
But nevertheless, due to the lack of any information about the inter-
mediate space the user will most likely tend to (mistakenly) think
of mixed clusters.

5.2 Substituting the Second Stage
To eliminate the drawback of overplotting clusters, we substitute
the projection in the second stage with a topology-based projec-
tion from the l-dimensional intermediate space to a 3-D topologi-
cal landscape (which can be easily reduced to a 2-D visualization



(a)

(b)

Figure 4: (a) topological landscape of the REUTERS data set in the
intermediate 9-dimensional space. The topological analysis reveals
the separated clusters which were overplotted by the Rank-2 LDA
(b) without rebalancing the branch decomposition, the spacial rela-
tionship between density attractors can be read off the landscape.

as described in the next section). Considering the LDA-projected
(l = k−1)-dimensional point cloud, at first the Gabriel graph is cal-
culated to obtain neighborhood information, and a Gaussian-like fil-
ter kernel is applied on the graph’s vertices and edges. Having this
approximated density distribution, we determine its contour tree, or
more precisely the join-tree as its representative. Subsequently, this
tree serves as the input for the mapping process to achieve the final
topological landscape visualization.

To justify this substitution of the second stage, we revisit the
REUTERS example from above. Although the documents belong-
ing to (c)orn, (w)heat and (g)rain are semantically related, the scat-
terplot matrix shows us that the corresponding clusters are still sep-
arated. These separated point accumulations lead to several density
maxima inside the density distribution, resulting in several hills in
the topological landscape. Figure 4(a) shows the topological land-
scape of the REUTERS data set. As can be seen, we are now able
to distinguish dense parts of the point cloud which are separated
by a region with low density. The hills of the landscape describe
the topology of the point cloud’s density distribution, i.e., hills cor-
respond to contours evolving between their appearing at a density
maximum and their merging at a saddle point. The colors of the
hills have no special meaning and are chosen randomly. The small
spheres correspond to the actual data points and are placed on the
hills that correspond to their clusters. The colors of the spheres re-
flect their class association, thus corresponding to the coloring in
Figure 3. As described in [17], the visual analysis process is per-
formed by finding an appropriate filter radius. For this purpose,
the user examines the landscape in each iteration and determines
the filter radius for the next iterative step. The analysis process is
finished when the user has extracted the desired clustering informa-
tion or when the landscape denotes that the filter radius is getting
too small. In the latter case, noise starts to produce density attrac-
tors or several extrema are found inside one cluster. Concerning
the rebalancing, we point out that although this step was originally
proposed in [24] to improve space utilization, for clusterings, the
non-rebalanced landscape accurately reflects the spatial relation-

ship between groups of points. As demonstrated in Figure 4(b),
the hills (of each hierarchy level) are positioned in a spiral layout
around the center hill, which corresponds to the global maximum.
That is, the global maximum lies inside the ’m’/’i’-cluster, as this
is the densest cluster (i.e., points per area). In the neighborhood to
this density maximum there are two other attractors, correspond-
ing to (local) accumulations of ’i’-class and ’m’-class points. Next
to these clusters, the yellow ’s’-cluster and the cyan ’r’-cluster are
closer to each other than to the yet found ’i’/’m’-clusters. The same
holds for the ’a’, ’e’ and ’t’ clusters, which all have their own den-
sity attractor, but have their saddle positions in the neighborhood of
the clusters that have been found yet. The hilly nesting structure of
the ’g’/’w’/’c’ accumulations corresponds to a locally neighbored
situation of these points, being separated from the remaining den-
sity maxima (clusters) by low density regions. A comparison of
this landscape with Figure 3(a) leads to roughly the same neighbor-
hood description, except for all the information that was lost by the
second stage projection in Figure 3(a).

6 EXTENDING THE VISUALIZATION

Although it is capable of visualizing arbitrary, high dimensional
data, the original topological landscape metaphor was only applied
to visualize the topology of 3-D scientific scalar fields, given on
regularly sampled grids. Using this metaphor to visualize data on
a completely unstructured grid, sampled mostly inside the clusters
and hardly in between, leads to some perceptual problems:

6.1 3-D to 2-D

First of all, as the landscape is still three dimensional, it suffers
from overlapping of the hills and therefore the benefit of the visu-
alization is view-dependent (especially when data points are posi-
tioned at the back of a hill). To alleviate the overlapping of hills and
data points, we propose a flattening of the original topological land-
scape. Using the same construction scheme like in 3-D, we create
a flat 2-D landscape by using the join tree’s (interpolated) isovalues
as additional vertex information instead of considering them as 3-D
height values. On this 2-D scalar field, which has the same topol-
ogy like the input join tree, we apply normal color mapping and iso-
line extraction to encode the absolute densities. In order to support
the advantage of metaphors, we relate this visualization to an atoll
by applying a color coding from blue (water) to yellow (beach),
then fading from green (grass) into brown (mountains) and finally
to white (snowy mountain top). The isolines, which correspond to
the original height values, allow for an easier density correlation
between the data points. Altogether, this visualization supports the
same topological insights, but with far less overlapping in 2-D.

6.2 Improved Volume distribution

The second problem concerns the representation of approximated
contour volumes, i.e., the size of clusters in our case. As described
in [24], a metric-based distortion can be applied to the landscape
in order to better reflect the real size of hills (contours), which oth-
erwise would only depend on the landscape’s construction scheme
itself. Therefore, the triangles of a hill are resized according to the
hill’s corresponding cluster volume. Because this volume is dis-
tributed equally to all the triangles of a hill, the centered hill of
nested hierarchies gets heavily distorted. This primarily destroys
the visual expressiveness of the hill’s corresponding cluster in the
landscape. To solve this, we change the triangles’ volume assign-
ment. Instead of dividing a branch’s volume by the number of the
corresponding triangles, we assign the volume above the first sad-
dle to the eight triangles of the centered hill and the volume beneath
the first saddle is assigned equally to all the remaining triangles. Al-
though this could be done more accurately, by considering each vol-
ume between each pair of saddles, we believe that this distribution



Figure 5: The flattened and volumetric distorted topological land-
scape of the REUTERS data set. The height lines and the coloring
reflect the original height values (i.e., the absolute density values)
from low (blue) to high (white). Furthermore, the distorted islands
better reflect the actual cluster volumes.

sufficiently points out the volume of the corresponding cluster. Fig-
ure 5 shows the flattened REUTERS landscape with the size of the
hills (islands) corresponding to the clusters’ sizes (approximated by
the number of points).

6.3 Labeling
We additionally enhance this visualization with a labeling of both
the hills and the small data spheres. Since we are dealing with docu-
ments, we most likely want to show their titles at first. But showing
the titles of all documents would result in a huge overplotting of the
labels. Therefore, we have implemented the basic ’excentric label-
ing’ approach, proposed by Fekete et al. [5]. In this approach the
user slides a small focus area over the data set, labeling only those
data points which lie inside the small focus window. The labels are
positioned around the focus area and they are connected with their
corresponding data entities by a line. In the end, the labels are col-
ored according to the class of the data points. If titles are too long,
we cut them or use a given short version of the title.

Following the ideas of tf-idf and the vector space model, the
clusters are thought to constitute topics. Document vectors belong-
ing to the same topic most likely share similar words with similar
significances. Therefore, these document vectors accumulate in the
subspace spanned by the dimensions (words) they share. The goal
is to provide hills (clusters) with labels corresponding to their top-
ics. Instead of using the documents’ class-association, we propose
a quick semantic analysis. Considering the documents on a single
hill, we search for the most frequent word(s) they share. Finally,
we use the two most frequent words as a hill’s topic.

7 CLASSIFICATION

Assuming an unclassified entity would match one of the given
classes, it is possible to use our proposed two-stage process for
classification purposes: The LDA, as a linear dimension reduction,
projects similar high dimensional vectors into the same region in
the lower dimensional space. Therefore, if we assume that we al-
ready have learned the LDA projection for a given class (based on
the classified input data), the nature of LDA ensures that additional
similar unclassified vectors are projected into the same lower di-
mensional target area. While this, on the one hand, is solely owed
to the projection itself, we can, however, rely on the fact that similar
vectors (classified or not) are comprised by the same contours of the
density function. Therefore, although it is the first stage projection
which ensures a clustering in the lower dimensional space, it is the
second stage topological projection which eventually gives us a tool
for detecting the clustering and to perform a classification, based on
cluster association. From our algorithm’s point of view, we assign
unclassified data entities the class of their neighbored classified en-
tities as follows: We determine the LDA projection matrix based

on the classified data and use this matrix to project both the classi-
fied and unclassified data (resulting in accumulations in the lower
dimensional space if the vectors are similar). We now have two
choices: First, we combine both point clouds to serve as the input
for the topological analysis, or we alternatively apply the topolog-
ical analysis solely on the classified point cloud and approximate
the topology of the combined point cloud as follows: We extend the
height graph of the input point cloud by an edge between each un-
classified data point and its nearest classified neighbor (this equals
the finding of the nearest contour). Afterwards, we compute the
densities at these edges’ mid-points and at the unclassified points
(in both cases, based on the classified entities). On this extended
height graph, we continue as before. For both scenarios, we find
similar classified and unclassified documents on the same branches
in the branch decomposition, thus assigning an unclassified entity
the label of the most frequent class on the entity’s branch (i.e., is-
land in the landscape).

8 DISCUSSION AND EXAMPLES

Analyzing the l-dimensional intermediate space is, of course, more
expensive than analyzing a (lossy) 2D space. For detailed runtime
complexities we refer to [4], [17] and [24] and discuss some com-
mon runtime issues instead: First, the prior LDA projection greatly
accelerates the topological analysis of the point cloud’s density dis-
tribution in the intermediate vector space. This acceleration is due
to the fact that the reduced dimensionality leads to a less full Gabriel
graph, resulting in less necessary density evaluations on the graph’s
edges. Since graph connectivity commonly increases exponentially
with each additional dimension, this approach leads to significant
difference for high dimensional data sets. Besides this, we can also
use the classification ideas from the last section and treat a percent-
age of the input data as it was unclassified. By randomly using,
e.g., only 50% of the input vectors to learn the LDA projection ma-
trix, the remaining 50% of the vectors are thought to be projected
correctly, due to their similarity to the training data. Of course, us-
ing only a part of the input data greatly accelerates the runtime of
the LDA. We will demonstrate the quality of both classification and
using only a subset of the data later in this section.

For demonstration purposes, we apply our method on a New York
Times document collection and a patent collection. As mentioned,
we refer to the literature for detailed information regarding the run-
time of the individual steps. To provide a rough guideline, the
topological analysis of the previous REUTERS example and the
upcoming examples in this chapter took around four seconds each.
Our machine has 8GB memory and we use two 2,6GHz-QuadCore
processors to benefit from parallelism.

8.1 NYT - Document Collection
The New York Times Annotated Corpus4 contains over 1.8 million
articles written and published by the New York Times between Jan-
uary 1, 1987 and June 19, 2007 with article meta-data provided by
the New York Times Newsroom, the New York Times Indexing Ser-
vice and the online production staff at nytimes.com. As part of the
New York Times’ indexing procedures, most articles are manually
summarized and tagged by a staff of library scientists.

For our testing purposes, we consider the year 2001 and extract
50 documents per day. As described in Section 3, we use the tf-idf
document-term weighting and the terms’ volatility to determine the
document vectors. Therefore, considering a single document, all
the stop words are pruned and the normal tf-idf weighting scheme
is applied to the remaining words. Subsequently, a 30-day slid-
ing window is used to determine a term’s volatility for each of
the 365 days. Then, we use the variance of each term’s volatil-
ity series to achieve an ordered series of over-year importance of

4http://www.ldc.upenn.edu
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Figure 6: (a) 2-D visualization of the NYT data set. Islands corre-
spond to topics and their sizes fit the clusters’ number of documents.
(b) The same landscape for a higher filter radius and without volumet-
ric distortion. The small spheres between the islands are assumed
to be outliers or noise (i.e., documents with too common vocabulary).
(c) documents inside the focus area are labeled with their titles.

all volatile terms. Finally, we clip the tf-idf vectors by the words
which are not assumed to be volatile enough (based on their posi-
tion in the ordered list). As a classification, we randomly choose
documents corresponding to 10 different tags, up to 250 per group.
Altogether, this test case consists of 1,896 documents (points), de-
scribed by 46,393 words (dimensions). Figure 6 shows some pic-
tures of the final visualization. As can be seen, the LDA and the
subsequent topology-based projection down to 2-D preserve the 10
topical clusters, successfully described by the vector space model.
The proposed labeling of the hills appropriately reflects the under-
lying topics, suggested by the document titles and implied by the
documents’ content. Looking at the visualization, it is important to
understand that closeness of islands does not imply that the corre-
sponding topics are related in the original space. This information
gets lost during the projection and, therefore, spatial relationships
are only encoded in the hierarchy of hills. (i.e., only sub-hills ex-
press spatial closeness to their parent hill).

8.2 Patent Collection

Access to patent information is of importance for a variety of inter-
est groups today. Besides many other properties, the majority of in-
formation describing the nature of a patent is still conveyed through

its textual content, therefore making natural language processing
(NLP) a mandatory part of solutions for patent analysis. The shear
mass, complexity, high dimensionality, and heterogeneity of patent
data, make scalable visual analytics approaches for patent analy-
sis [15] a hard task. One particularly relevant type of meta data
that is available for patent applications is manually assigned classi-
fication information. This classification information organizes the
vast numbers of patents into predefined classes representing certain
technical or functional aspects. Several different schemes for patent
classification, such as the International Patent Classification (IPC),
Japanese F-terms, and the US classification, exist. Patent offices
are interested in automatic classification of new patent applications
according to the existing classification schemes.

In order to evaluate our approach, we tested against the IPC com-
prising more than 70,000 classes, hierarchically organized into sec-
tions, classes, subclasses, main groups, and sub groups. In the end,
our test case consists of 1,552 randomly selected patents from dif-
ferent IPC hierarchies (up to 200 each):

’A61K..38/17’, ’C12N...1/21’, ’H04Q...7/22’, ’B41C...1/10’,
’C09D..11/00’, ’C09J...7/02’, ’G01N..33/53’, ’H04Q..11/04’

We used patent data5 from the European Patent Office (EPO). As a
preprocessing step, the data has been analyzed and the text content
was stored in vectorized form within a search index. From this in-
dex the tf-idf values for all dimensions of the term vectors have been
computed. First, we examine whether our landscape reflects the
nesting structure of the chosen patent hierarchy. Figure 7(a) shows
the visualization for our test case. Mainly four groups can be iden-
tified: The purple and brown points in the upper-right corner, be-
longing to H04Q patents, clearly address networking, as the labels
(and the document titles) relate to atm, address, message, ip and
cell. In fact, the H04Q IPC-hierarchy categorizes patents belong-
ing to “electricity” (H), “electric communication technique”(H04)
and “selecting (switches, relays, etc)” (H04Q). Although the group
of pink, blue and black points on the right-hand side belongs to
completely different IPC-sections (A61K, C12N, G01N), the corre-
sponding patents all concern medical issues in their major field: A -
Human Necessities, C - Chemistry, G - Physics. Because they share
the medical vocabulary, they still constitute one topic in the vector
space model. Finally, the centered hill belongs to the B41C cluster
and the green and golden points comprise a cluster related to appli-
cations of materials in chemistry and metallurgy (C09D, C09J).

We want to use this patent example to furthermore demonstrate
the classification ideas from section 7. We, therefore, split the
patents into 50% classified training data and 50% unclassified test
data, which means that we henceforth ignore their class label. For
illustration purposes, however, we remember the test data’s class as-
sociation for coloring in the landscape. After determining the train-
ing set’s LDA projection matrix, we use it to project both patent sets
and use their combination for our topological analysis. Figure 7(b)
shows the (not volumetric distorted) landscape. As can be seen, the
training data (represented by spheres) and the test data (represented
by cones) belonging to particular classes (represented by the color)
are all hosted on mainly their own islands. This nicely confirms,
that due to their shared vocabulary, i.e., their shared dimensions,
patents of a specific class are equally handled by the LDA, and their
accumulation in the lower dimensional space allows us to topologi-
cally find the dense area as one combined cluster. While this allows
for a faster LDA computation, the topological encoding by means
of the join tree’s branch decomposition also offers a way to provide
the test data the (main) class of a branch’s / hill’s training data class.
Regarding our example, the runtime of the LDA using all the data
took 28s, whereas using only 50% took only 12s. Regarding the
classification quality, we determined for each branch (island) how

5from ’Text of EP-A documents’ and ’Text of EP-B documents’
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Figure 7: (a) 2-D topological landscape of the patent data set. The
nesting structure of the islands reflects the IPC hierarchy of the test
data set. (b) The same landscape without volumetric distortion. Even
by learning the LDA with only 50% of the input data, the remaining
patents (the cones) are placed on their correct islands (clusters).

many of the branch’s test data entities match the branch’s training
data class (using the test data’s known class in this case). On av-
erage, 89.4% of the test data on a branch matches the class of the
training data, or more precisely ≈ 76.7% in the noisy region of
the medicine archipelago, and ≈ 99.6% on the remaining branches
which correspond to clusters being better separated.

9 CONCLUSIONS AND FUTURE WORK

In order to cluster document point clouds, we referred to the neces-
sity of reflecting similarity by distance and we pointed to uniform
distances, caused by the curse of dimensionality. We tried to al-
leviate the first problem by using a term’s volatility, as we think
that this results in more topical related terms. Concerning the di-
mensionality, we showed that a supervised approach is necessary
in very high dimensional spaces. Therefore, we proposed a two-
stage framework consisting of a supervised LDA projection down
to (k− 1)-D, followed by a direct topological analysis of this in-
termediate vector space. By doing so, we were able to improve
comparable approaches which use lossy second stage projections.
We also extended the visualization in [17] to facilitate a more pre-
cise and less overlapping analysis process in 2-D. For classifica-
tion purposes, we showed how the LDA and the use of the branch
decomposition can be used for automatic document classification
based on an existent classification. Furthermore, the quality of the
classification itself can be verified by examining the distribution of
colored points in the landscape. If a single color occurs on sev-
eral hills, the clustering (and therefore the classification) might be
inappropriate. Since the presumed classification is some kind of a
drawback compared to unsupervised approaches, our future work
will concern the investigation and support of classification methods
(maybe also topology-based). We also consider other data struc-
tures to identify more complex topological features.
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